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Honey Coiling - A Study on the Gravitational Regime of
Liquid Rope Coiling
Patrick Meister, MNG RŠmibŸhl, patrickmeister@ymail.com

1 Introduction

We report on the coiling motion a falling stream of viscous liquid starts to exhibit after the impact on
a rigid surface. This phenomenon is often observed in everyday life when pouring shampoo onto one’s
palm or dripping honey on a toast. The problem was formulated as a task of the International Young
Physicists’ Tournament 2013 (brief IYPT) as follows:

“A thin, downward flow of viscous liquid, such as honey, often turns itself into circular coils. Study
and explain this phenomenon.”

Experimentally it is easily found that over a broad range of frequencies there appear to be four regimes
of coiling. In literature there has already been a great study on the geometry of the viscous jet [1]
and on all four regimes, wherefore proportionalities for the characteristic coiling frequencies have been
obtained using dimensional analysis [2, 3].
In this article we report our findings on the initial process the stream undergoes in order to start
the coiling motion. Furthermore we present an analytical derivation of the frequency relation of the
gravitational regime and its physical interpretation. Therefore we introduce the idea of bending torque
for viscous liquid jets.

2 Theory

2.1 Regimes of Coiling

A falling stream of viscous liquid that emerges from a nozzle at a fixed height is being accelerated due
to gravity as it falls towards the ground. Shortly after the impact the liquid jet turns itself into a stable
circular motion that results in building up a coil of viscous liquid which eventually either collapses or
gradually flows outwards. In literature the coiling section is named the coil and the falling stream of
fluid above it is called the tail.
It is found that for different release heights there are four distinctively different types of coils that
form, which divide the phenomenon into four regimes of coiling. These regimes are characterised by
the forces which are dominant in the bending process of the liquid beam. Since they mainly depend
on the net acceleration on each segment of the tail right before it is bent into the coil we can discuss
the regimes by looking at the geometry of the tail.
As we know from the continuity equation of liquid flow, if the volume flow rate is kept constant as the
liquid jet is being accelerated and thus increases its velocity, its cross-sectional area has to decrease.
Therefore we can tell by the change in diameter of the tail how high the net acceleration relative to
gravity is. It is relatively easy to imagine, that for rather small release heights the liquid jet undergoes
little acceleration and thus its cross-section does not decrease by a lot since the tail is still moving at
rather low velocities. Therefore viscous forces are dominant in this regime relative to gravitational and
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inertial forces (FV >> F G, FI ). In literature this regime is called the viscous regime. As we increase
the height the beam can accelerate more and becomes thinner. In this regime the Þlament undergoes
the greatest change in velocity due to gravity. Therefore upon impact it is mainly the gravitational pull
acting on the segment that has to overcome the viscous forces to bend the Þlament (FG ! FV >> F I ).
Hence it is called thegravitational regime. Finally, for relatively large release heights the Þlament
reaches such high velocities that viscous friction forces cancel out the gravitational pull and the net
acceleration goes towards zero. In this regime we mainly look at the momentum of the segment being
bent into the coil and thus inertial forces govern the process (FI ! FV ! FG). Therefore it is called
the inertial regime. Furthermore, it is found that at the transition between the gravitational and
inertial regime there seems to be an additional regime with chaotic behavior. Thus it is called the
inertia-gravitational regime.
In this article we will mainly focus on the gravitational regime.

2.2 General Relation for Coiling Motion

In order to make a general prediction for the coiling frequency we will Þrst look at the circular motion
of the coil. Generally, the angular frequency of any circular motion is the tangential velocity divided
by the trajectoryÕs radius as denoted in (1). For this phenomenon we can say that the velocity of the
circular motion is the velocity at which the tail is laid down on the surface, which has to be the same
as just above the coil and can therefore be found using the continuity equation as in (2).

! =
v
R

(1)

v =
Q
A

=
Q

"r 2 (2)

Where ! is the angular velocity, v the tangential velocity, R the radius of the coil, Q the ßow rate and
r the radius of the cross-section of the tail. The coiling frequencyf is related to the angular velocity
by 2"f = ! . By combining (1) and (2) the following general relation for the coiling motion can be
derived.

f "
Q

r 2R
(3)

As we will later see in our experimental results this relation holds for any release height and thus for
every regime. However, when investigating the coilÕs radiusÕ dependency on the release height, one
Þnds it to be very nonlinear. In the viscous regime it increases strongly with height and then over the
gravitational and inertial regimes it decreases asymptotically. In order to make speciÞc predictions for
the coiling frequency of the gravitational regime we have to study the bending process of the Þlament
in greater detail.

2.3 The Bending Torque

When a solid rod is bent over a certain curvature, a torque has to be applied on both ends. This
bending torque M can be written as

M =
1
R

Y I, (4)

where R denotes the radius of curvature,Y YoungÕs modulus or elastic modulus andI is the moment
of inertia of the cross-sectional area of the rod.
In our case the radius of curvature over which the Þlament is bent is obviously the radius of the coil
itself and the second moment of inertia of the area is the one of a circle of radiusr of the tail just
above the coil.

I =
"
4

r 4 (5)
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inertial forces (FV >> FG, FI ). In literature this regime is called the viscous regime. As we increase
the height the beam can accelerate more and becomes thinner. In this regime the filament undergoes
the greatest change in velocity due to gravity. Therefore upon impact it is mainly the gravitational pull
acting on the segment that has to overcome the viscous forces to bend the filament (FG ! FV >> FI ).
Hence it is called the gravitational regime. Finally, for relatively large release heights the filament
reaches such high velocities that viscous friction forces cancel out the gravitational pull and the net
acceleration goes towards zero. In this regime we mainly look at the momentum of the segment being
bent into the coil and thus inertial forces govern the process (FI ! FV ! FG). Therefore it is called
the inertial regime. Furthermore, it is found that at the transition between the gravitational and
inertial regime there seems to be an additional regime with chaotic behavior. Thus it is called the
inertia-gravitational regime.
In this article we will mainly focus on the gravitational regime.

2.2 General Relation for Coiling Motion

In order to make a general prediction for the coiling frequency we will first look at the circular motion
of the coil. Generally, the angular frequency of any circular motion is the tangential velocity divided
by the trajectory’s radius as denoted in (1). For this phenomenon we can say that the velocity of the
circular motion is the velocity at which the tail is laid down on the surface, which has to be the same
as just above the coil and can therefore be found using the continuity equation as in (2).
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Where ω is the angular velocity, v the tangential velocity, R the radius of the coil, Q the flow rate and
r the radius of the cross-section of the tail. The coiling frequency f is related to the angular velocity
by 2πf = ω. By combining (1) and (2) the following general relation for the coiling motion can be
derived.
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As we will later see in our experimental results this relation holds for any release height and thus for
every regime. However, when investigating the coil’s radius’ dependency on the release height, one
finds it to be very nonlinear. In the viscous regime it increases strongly with height and then over the
gravitational and inertial regimes it decreases asymptotically. In order to make specific predictions for
the coiling frequency of the gravitational regime we have to study the bending process of the filament
in greater detail.

2.3 The Bending Torque

When a solid rod is bent over a certain curvature, a torque has to be applied on both ends. This
bending torque M can be written as

M =
1

R
Y I, (4)

where R denotes the radius of curvature, Y Young’s modulus or elastic modulus and I is the moment
of inertia of the cross-sectional area of the rod.
In our case the radius of curvature over which the filament is bent is obviously the radius of the coil
itself and the second moment of inertia of the area is the one of a circle of radius r of the tail just
above the coil.
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π
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However, generally ßuids do not have YoungÕs moduli. Nevertheless, when a Þlament of su!ciently
viscous liquid is deformed by stresses, viscoelastic properties of the ßuid have to be considered. The
viscoelasticity YV of such a liquid is proportional to the shear rate the liquid undergoes and of course
the dynamic viscosity ! .
In the process of bending the Þlament into the coil the rate of shearing can be described by the change
of velocity over the radial distance by the following relation.

YV ! !
dv
dR
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R
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If we now put (5) and (6) into the general equation for the bending torque we can derive a relation for
the bending torque of viscous liquids with circular cross-sections.

M V !
#
4

! v r 4

R2 (7)

2.4 The Gravitational Regime

In the gravitational regime the force of gravity is dominant in the process of bending. Therefore, in
our theoretical approach we regard the force of gravity, that is acting on the section of the tail that is
bent into the coil, to be the driving force that creates the bending torque.

Figure 1: Schematic
of tail above coil.

We can say that the power needed for bending is provided by the gravitational
pull on it. Including power losses due to viscous friction and heating a propor-
tionality between the potential power stored in the segment by gravityPG and
the power used for bendingPB is formulated.

PG ! PB (8)

The relation in (8) can be represented using the beding torque and the force of
gravity in the following way.

FG áv ! M á" (9)

Here, v is the velocity the segment travels at and" is the angular velocity of
the coiling motion the tail is bent into. The length of the segment that is bent
has to be the same as the cicumference of the coil, as illustrated in Fig.1. We
can thereby determine its mass and by using the earlier derived relation (7) for
the bending torque of viscous liquids we can obtain the following characteristic
relation for the radius R of the coil in the gravitational regime.

R !
!

$ Q
g

" 1
4

(10)

Here $ = !
" is the kinematic viscosity of the liquid. Now we can use this relation for the radius of

the coil to derive the characteristic relation of the coiling frequencyf G in the gravitational regime
by inserting it into the general relation for the coiling motion (3). Thereby, we arrive at this Þnal
expression.

f G !

#
g Q3
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4

(11)

The characteristic coiling frequency of the other regimes can be found analogously by determining
the dependency of the radius of the coil in each regime using the bending torque relation for viscous
liquids.
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3 Experimental Setup

The experiments were conducted using silicone oil of several viscosities, ranging from 5 Pa · s to
100 Pa · s, since it is a newtonian fluid. The liquid was put into an injection upon which weights could
be loaded to vary the flowrate out of the injection as can be seen in Fig.2. The falling height could be
varied by changing the level of the container that was put onto a scale that was used to measure the
flowrate. This was done taking the additional momentum of the tail into account. The phenomenon
was filmed with a high-speed camera at up to 500 fps and then analyzed using the video analysis
software Logger Pro.

Figure 2: Experimental setup

4 Results and Discussion

In Fig.3 the initial process is split up into the main steps. As the beam falls towards the plate it
accelerates (a). When it reaches the surface, it decelerates rapidly, however, due to its relatively high
viscosity the fluid can not flow outwards and thus pressure is built up (b). As more liquid flows down
that cannot flow away a pressure stasis within the beam is built up. Eventually the liquid filament
undergoes self-buckling and bends outwards (c). The stream then falls outwards and the filament is
layed onto the surface (d), until it reaches a point where viscous stresses inside the filament pull it
backwards and it folds in on itself (e). The tail then starts an oscillatory motion and eventually turns
itself into coiling as the circular motion can be regarded to be the optimal distribution of stresses.

Figure 3: Initial process of liquid rope coiling
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3 Experimental Setup

The experiments were conducted using silicone oil of several viscosities, ranging from5 Pa · s to
100Pa · s, since it is a newtonian ßuid. The liquid was put into an injection upon which weights could
be loaded to vary the ßowrate out of the injection as can be seen in Fig.2. The falling height could be
varied by changing the level of the container that was put onto a scale that was used to measure the
ßowrate. This was done taking the additional momentum of the tail into account. The phenomenon
was Þlmed with a high-speed camera at up to 500 fps and then analyzed using the video analysis
software Logger Pro.

Figure 2: Experimental setup

4 Results and Discussion

In Fig.3 the initial process is split up into the main steps. As the beam falls towards the plate it
accelerates (a). When it reaches the surface, it decelerates rapidly, however, due to its relatively high
viscosity the ßuid can not ßow outwards and thus pressure is built up (b). As more liquid ßows down
that cannot ßow away a pressure stasis within the beam is built up. Eventually the liquid Þlament
undergoes self-buckling and bends outwards (c). The stream then falls outwards and the Þlament is
layed onto the surface (d), until it reaches a point where viscous stresses inside the Þlament pull it
backwards and it folds in on itself (e). The tail then starts an oscillatory motion and eventually turns
itself into coiling as the circular motion can be regarded to be the optimal distribution of stresses.

Figure 3: Initial process of liquid rope coiling

With the data obtained from our experiments we could verify our theoretical predictions of the coiling
frequencies.

Figure 4: General coiling frequency relation. Figure 5: Coiling in gravitational regime.

As we can see in Fig.4 the linear relation that was predicted in (3) for the general coiling motion could
be found experimentally. The errors arise mainly from the video analysis, where for very small scales
the diameter of the tail could not be measured very accurately. Furthermore, the coiling frequency
can be slightly perturbed as well, which is due to geometrical imperfections and the liquid below the
coil flowing away. In Fig.5 the relation in (11) could be verified as well, where the errors arise for the
same reason.

5 Conclusion

We have been able to explain the phenomenon’s initial process that leads to the coiling motion. Fur-
thermore, we have provided a way to derive the characteristic coiling frequency relations, which has so
far only been possible using dimensional analysis.
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