Matematica finanziaria nell'insegnamento liceale, Modelli matematici per la matematica finanziaria

Corso di aggiornamento di matematica Savosa, mercoledì 20 ottobre 2010 Liceo cantonale, Aula magna

Trascrizione della relazione del prof. R. Ferretti, docente a contratto di matematica all'USI nonché responsabile nel settore finanziario privato

L'albero binomiale

$$S_{1}(H) = u \cdot S_{0}$$

$$S_{0}$$

$$S_{1}(T) = d \cdot S_{0}$$

Sia d < u, p: probabilità di H, r = tasso di interesse.

L'assenza di arbitraggio (ipotesi che deve rendere la situazione reale) impone: 0 < d < 1 + r < u. Altrimenti, per assurdo:

- i) $d \ge 1 + r$: si prendono soldi in prestito, si acquista l'azione e anche nel peggiore dei casi si avrà un utile.
- ii) $1+r\geq u$: si vende "allo scoperto" l'azione e il ricavato è depositato sul conto corrente (tasso d'interesse r). Anche nel peggiore dei casi resterà il capitale iniziale S_0 .

Le opzioni CALL/PUT europee: contratto che permette di vendere o acquistare l'azione ad un certo prezzo K (K = Strike) su di un certo orizzonte temporale.

Esempio

$$S_0 = 4$$
, $u = 2$, $d = \frac{1}{2}$, $r = \frac{1}{4}$,
 $\Rightarrow S_1(H) = 8$, $S_2(T) = 2$
Opzione CALL: $K = 5$ $(S_1(T) < K < S_2(H))$.

Con un capitale iniziale $X_0 = 1.20u$, si vuole acquistare $\Delta_0 = \frac{1}{2}$ azione, prendendo in prestito 0.80u.

Posizione di liquidità di $X_0 - \Delta_0 \cdot S_0 = -0.80u$.

Al tempo 1 si avrà: o $\frac{1}{2}S_1(H) = 4$ o $\frac{1}{2}S_2(T) = 1$ e come posizione azionaria $(1+r)(X_0 - \Delta_0 \cdot S_0)$. Segue:

$$X_1(H) = \frac{1}{2}S_1(H) + (1+r)(X_0 - \Delta_0 \cdot S_0) = 3$$

$$X_1(T) = \frac{1}{2}S_1(T) + (1+r)(X_0 - \Delta_0 \cdot S_0) = 0$$

Alberi binomiali a più periodi

$$S_{2}(HH) = u^{2} \cdot S_{0}$$

$$S_{1}(H) = u \cdot S_{0}$$

$$S_{2}(HT) = S_{2}(TH) = u \cdot d \cdot S_{0}$$

$$S_{1}(T) = d \cdot S_{0}$$

$$S_{2}(TT) = d^{2} \cdot S_{0}$$

Al tempo 1:

$$X_1 = \Delta_0 \cdot S_1 + (1+r)(X_0 - \Delta_0 \cdot S_0) = (1+r) \cdot X_0 + \Delta_0 \cdot (1+r)(S_1 - (1+r) \cdot X_0)$$

$$X_0 + \Delta_0 \cdot \left(\frac{1}{1+r} \cdot S_1(H) - S_0\right) = \frac{1}{1+r} \cdot V_1(H)$$

$$X_0 + \Delta_0 \cdot \left(\frac{1}{1+r} \cdot S_1(T) - S_0\right) = \frac{1}{1+r} \cdot V_1(T)$$

Da cui:
$$X_0 = \frac{1}{1+r} \cdot \left[\tilde{p} \cdot V_1(H) + \tilde{q} \cdot V_1(T) \right]$$
, valore atteso, con $\tilde{p} = \frac{1+r-d}{u-d}$ e $\tilde{q} = \frac{u-1-r}{u-d}$.

Vale: $\tilde{p}, \tilde{q} \ge 0$ e $\tilde{p} + \tilde{q} = 1$.

\tilde{p}, \tilde{q} : probabilità neutrale rispetto al rischio.

$$\begin{split} \tilde{p} \cdot S_1 \left(H \right) + \tilde{q} \cdot S_1 \left(T \right) &= \frac{1 + r - d}{u - d} \cdot u \cdot S_0 + \frac{u - 1 - r}{u - d} \cdot d \cdot S_0 = \\ &= \frac{S_0}{u - d} \cdot \left[u + ru du du du - d - dr \right] = \frac{S_0}{u - d} \cdot \left[u \left(1 + r \right) - d \left(1 + r \right) \right] \\ &= S_0 \cdot \left(1 + r \right) \end{split}$$

 Δ_0 : numero di azioni acquistate al tempo 0.

$$\begin{split} X_{1}(H) &= \Delta_{0} \cdot S_{1}(H) + (1+r)(V_{0} - \Delta_{0} \cdot S_{0}), \\ X_{1}(T) &= \Delta_{0} \cdot S_{1}(T) + (1+r)(V_{0} - \Delta_{0} \cdot S_{0}) \\ V_{2}(HH) &= \Delta_{1}(H) \cdot S_{2}(HH) + (1+r)(X_{1}(H) - \Delta_{1}(H) \cdot S_{1}(H)) \end{split}$$

$$V_{2}(HT) = \Delta_{1}(H) \cdot S_{2}(HT) + (1+r)(X_{1}(H) - \Delta_{1}(H) \cdot S_{1}(H))$$

$$V_{2}(TH) = \Delta_{1}(T) \cdot S_{2}(TH) + (1+r)(X_{1}(T) - \Delta_{1}(T) \cdot S_{1}(T))$$

$$V_{2}(TT) = \Delta_{1}(T) \cdot S_{2}(TT) + (1+r)(X_{1}(T) - \Delta_{1}(T) \cdot S_{1}(T))$$

Si ottengono 6 equazioni nelle 6 incognite V_0 , Δ_0 , $\Delta_1(H)$, $\Delta_1(T)$, $X_1(H)$ e $X_1(T)$.

La soluzione è data da:

$$X_1(T) = \frac{1}{1+r} \cdot \left[\tilde{p} \cdot V_2(TH) + \tilde{q} \cdot V_2(TT) \right],$$

$$X_1(H) = \frac{1}{1+r} \cdot \left[\tilde{p} \cdot V_2(HH) + \tilde{q} \cdot V_2(HT) \right],$$

$$\Delta_1(T) = \frac{V_2(HH) - V_2(HT)}{S_2(HH) - S_2(HT)}.$$

Teorema La replica a più periodi.

Considerato un modello binomiale a N periodi con 0 < d < 1 + r < u.

Definiamo
$$\tilde{p} = \frac{1+r-d}{u-d}$$
 e $\tilde{q} = \frac{u-1-r}{u-d}$.

Sia V_N una variabile aleatoria dipendente dai lanci $\omega_1, \dots, \omega_N$ di una moneta.

Definiamo ricorsivamente

$$V_{N}(\omega_{1}, \dots, \omega_{N}) = \frac{1}{1+r} \cdot \left[\tilde{p} \cdot V_{N+1}(\omega_{1}, \dots, \omega_{N}, H) + \tilde{q} \cdot V_{N+1}(\omega_{1}, \dots, \omega_{N}, T) \right],$$

$$\Delta_{N}\left(\omega_{1}, \cdots, \omega_{N}\right) = \frac{V_{N+1}\left(\omega_{1}, \cdots, \omega_{N}, H\right) - V_{N+1}\left(\omega_{1}, \cdots, \omega_{N}, T\right)}{S_{N+1}\left(\omega_{1}, \cdots, \omega_{N}, H\right) - S_{N+1}\left(\omega_{1}, \cdots, \omega_{N}, T\right)} e$$

$$X_{N+1}(\bullet) = \Delta_N \cdot S_{N+1}(\bullet) + (1+r)(X_N(\bullet) - \Delta_N(\bullet) \cdot S_N(\bullet)),$$

allora
$$X_N(\bullet) = V_N(\bullet)$$
.

Se si sceglie $u = e^{\sigma \sqrt{t}}$, $d = \frac{1}{u}$, con σ la volatilità di S, si ottiene per $N \to \infty$ il modello di Black and Scholes della moderna teoria del portafoglio.

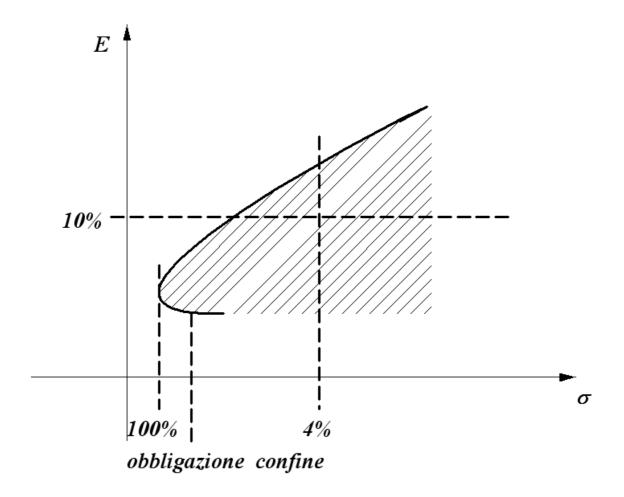
Siano $r_{1,i}$ e $r_{2,i}$ gli attivi e se scegliamo ω_1, ω_2 con $\omega_1 + \omega_2 = 1$:

$$r_{p,i} = \omega_1 \cdot r_{1,i} + \omega_2 \cdot r_{2,i}$$

Seque:

$$E(r_p) = \omega_1 \cdot E(r_1) + \omega_2 \cdot E(r_2)$$
, dove $E(\bullet)$ è il valore atteso o la media storica.

$$\sigma_p^2 = \omega_1^2 \cdot \sigma_1^2 + \omega_2^2 \cdot \sigma_2^2 + 2 \cdot \rho \cdot \sigma_1 \cdot \sigma_2 \cdot \omega_1 \cdot \omega_2$$
, dove σ_i è la volatilità dell'attivo i e ρ la correlazione.



Per saperne di più:

John Hull, Options, Futures, and Other Derivatives, Seventh Edition, Prentice Hall, 2009

John Hull, *Opzioni, futures e altri derivati*, 3. ed. basata sulla 5. ed. americana, Milano, Il sole-24 ore, 2003.

Una lista dei libri di Hull tradotti in italiano la si trova all'indirizzo: http://www.libreriauniversitaria.it/libri-autore_hull+john+c-c_john_hull.htm

Altri documenti si ottengono accedendo al sito di J. Hull http://www.rotman.utoronto.ca/~hull/

Un testo concepito per l'<u>insegnamento liceale</u>:

Adelmeyer, Moritz, Deutschschweizerische Mathematikkommission DMK (Hrsg.), *Call & Put, Einführung in Optionen aus wirtschaftlicher und mathematischer Sicht*, Themenheft Finanzmathematik, Orell Füssli, Zürich, 2000